Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection.

نویسندگان

  • Apollo Stacy
  • Jake Everett
  • Peter Jorth
  • Urvish Trivedi
  • Kendra P Rumbaugh
  • Marvin Whiteley
چکیده

The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites with many microbes, including commensal streptococci such as Streptococcus gordonii (Sg). During infection, Sg promotes the virulence of Aa by producing its preferred carbon source, l-lactate, a phenomenon referred to as cross-feeding. However, as with many streptococci, Sg also produces high levels of the antimicrobial hydrogen peroxide (H2O2), leading to the question of how Aa deals with this potent antimicrobial during coinfection. Here, we show that Aa possesses two complementary responses to H2O2: a detoxification or fight response mediated by catalase (KatA) and a dispersion or flight response mediated by Dispersin B (DspB), an enzyme that dissolves Aa biofilms. Using a murine abscess infection model, we show that both of these responses are required for Sg to promote Aa virulence. Although the role of KatA is to detoxify H2O2 during coinfection, 3D spatial analysis of mixed infections revealed that DspB is required for Aa to spatially organize itself at an optimal distance (>4 µm) from Sg, which we propose allows cross-feeding but reduces exposure to inhibitory levels of H2O2. In addition, these behaviors benefit not only Aa but also Sg, suggesting that fight and flight stimulate the fitness of the community. These results reveal that an antimicrobial produced by a human commensal bacterium enhances the virulence of a pathogenic bacterium by modulating its spatial location in the infection site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Serum Interleukin-18 levels in Helicobacter Pylori-infected Peptic Ulcer Patients and its Association with Bacterial CagA Virulence Factor

Background: Helicobacter pylori infection is one of the most common gastrointestinal infections worldwide. Predominant T-helper 1 (Th1) responses with increased gamma interferon (IFN- γ) levels have been proposed to play an important role in H. pylori-induced peptic ulcer. However, bacterial factors contributing to the initiation of Th1 polarization of H. pylori-specific immune responses have n...

متن کامل

Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection

Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in incr...

متن کامل

Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection.

Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobi...

متن کامل

Fight or flight? – Flight increases immune gene expression but does not help to fight an infection

Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicate...

متن کامل

Impact of space flight on bacterial virulence and antibiotic susceptibility

Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 21  شماره 

صفحات  -

تاریخ انتشار 2014